جلسه۷ رپیدماینر: آموزش یک پروژه عملی جهت خوشه بندی دیتاست حملات در رپیدماینر
جلسه شماره ۷: آموزش عملی خوشه بندی داده ها بر روی دیتاست حملات در رپیدماینر
مهمترین وظیفه خوشه بندی تقسیم کردن جمعیت یا داده های در چندین گروه است، به طوریکه نقاط داده ای در یک گروه نسبت به نقاط داده ای در گروه دیگر مشابه نیست. عبارت ساده تر، هدف اصلی خوشه بندی این است که گروه ها با صفات مشابه را جدا ساخته و آن ها را به خوشه ها اختصاص دهیم.
از جمله مهمترین کاربردهای خوشه بندی عبارتند از: جدا سازی داده های Outlier در یک مجموعه داده، گروه بندی جمعیتی از نمونه ها، حذف نمونه های پنهان و غیره.
بطور کلی در این جلسه آموزشی که ادامه جلسه ۶ از دوره آموزشی رپیدماینر است، بصورت عملی فرآیند خوشه بندی نمونه های حملات انجام می گیرد. در این جلسه آموزشی به توضیحات جزئی پرداخته نشده است و تنها اجرای خوشه بندی بر روی داده حملات صورت پذیرفته است.
با این وجود در این جلسه آموزشی بصورت فراگیر خواهید آموخت که نحوه خوشه بندی داده های حملات در یک سیستم مثل سیستم ناسا به چه صورت خواهد بود. بعبارت دیگر فرآیند خوشه بندی با استفاده از الگوریتم های K-Means و X-Means و K-Medio ds و DBSCAN را با هم خواهید آموخت.
سرفصل ها و رئوس مطالب در این جلسه آموزشی از مجموعه دوره های رپیدماینر عبارتند از:
برخی از مهمترین مباحثی که در این دوره آموزشی تشریح می گردد عبارتند از:
- تشریح دیتاست استفاده شده(دیتاست حملات) بصورت نمونه و معرفی ویژگی هدف که در مراحل خوشه بندی میبایست حذف گردد.
- معرفی کنترل Read Excel جهت ورود داده های مورد استفاده به مدل خوشه بندی تولید شده
- معرفی کنترل Replace Miss Value و اعمال به مدل جهت حذف نمونه های بلااستفاده
- معرفی کنترل Normalize و اعمال به مدل تولید شده جهت نرمال سازی داده ها و افزایش دقت خوشه بندی داده ها
- معرفی کامل الگوریتم خوشه بندی K-Means و پارامترهای مربوط به آن
- معرفی مشکلات و ضعف الگوریتم خوشه بندی K-Means و نقاط قوت این الگوریتم
- ارائه یک مثال عملی از الگوریتم خوشه بندی K-Means بروی داده های حملات در حالت نرمالایز و بدون حالت نرمالایز
- تشریح کامل خروجی ها و نتایج الگوریتم خوشه بندی K-Means
- معرفی کامل الگوریتم خوشه بندی X-Means و پارامترهای مربوط به آن
- معرفی مشکلات و ضعف الگوریتم خوشه بندی X-Means و نقاط قوت این الگوریتم
- ارائه یک مثال عملی از الگوریتم خوشه بندی X-Means بروی داده های حملات در حالت نرمالایز و بدون حالت نرمالایز
- تشریح کامل خروجی ها و نتایج الگوریتم خوشه بندی X-Means
- معرفی و تشریح بهبودهایی که الگوریتم X-Means نسبت به K-Means دارد
- معرفی الگوریتم خوشه بندی K-Mediods و پارامترهای مربوطه
- اعمال یک مدل عملی از نحوه خوشه بندی الگوریتم K-Mediods
- معرفی الگوریتم خوشه بندی DBSCAN و پارامترهای مربوطه
- اعمال یک مدل عملی از نحوه خوشه بندی الگوریتم DBSCAN
- تولید یک مدل خوشه بندی ترکیبی و ارائه سورس آن
این آموزش برای رشته های زیر مفید است:
دوره های آموزشی نرم افزار داده کاوی رپیدماینر(Rapidminer) از جلسات مقدماتی تا سطوح متوسطه و پیشرفته برای رشته هایی ذیل مناسب و مفید می باشد.
- رشته کامپیوتر گرایش های نرم افزار، سخت افزار و معماری
- رشته تجارت الکترونیک
- رشته برنامه نویسی
- رشته فناوری اطلاعات
- و سایر رشته های مرتبط
جلسه۷ رپیدماینر: آموزش یک پروژه عملی جهت خوشه بندی دیتاست حملات در رپیدماینر
-
رایگانجلسه۲۲ رپیدماینر: آموزش یک پروژه عملی درجهت پردازش تصویر در رپیدماینر
-
رایگانجلسه ۲۱ رپیدماینر: آموزش پردازش تصویر در رپیدماینر
-
رایگانجلسه ۲۰ رپیدماینر: آموزش یک پروژه عملی جهت تحلیل احساسات افراد در پیام ها با استفاده از متن کاوی در رپید ماینر
-
رایگانجلسه ۱۹ رپیدماینر: آموزش متن کاوی یا Text Mining در نرم افزار داده کاوی رپیدماینر
-
رایگانجلسه۱۸ رپیدماینر: آموزش اضافه نمودن پلاگین در نرم افزار داده کاوی رپیدماینر
-
رایگانجلسه ۱۷ رپیدماینر: آموزش انتخاب ویژگی با کنترل Optimization و الگوریتم های طبقه بندی در رپیدماینر
-
رایگانجلسه۱۶ رپیدماینر: آموزش انتخاب ویژگی های بهینه از مجموعه ی داده ها با استفاده از الگوریتم pso_svm در رپیدماینر
-
رایگاندوره آموزشی رپیدمانیر
-
رایگانجلسه۱۴ رپیدماینر: آموزش طبقه بندی داده های سرطان سینه با استفاده از روش voting در رپیدماینر
-
رایگانجلسه۱۳ رپیدماینر: آموزش طبقه بندی داده ها با الگوریتم Deep learning در رپیدماینر
-
رایگانجلسه۱۲ رپیدماینر: آموزش طبقه بندی مجموعه داده ها با کمک الگوریتم یادگیری عمیق در نرم افزار داده کاوی در رپیدماینر
-
رایگانجلسه۱۱ رپیدماینر: آموزش یک پروژه عملی پیش بینی میزان برق مصرفی باکمک الگوریتم های پیش بینی کننده در رپیدماینر
-
رایگانجلسه ۱۰رپیدماینر: آموزش پیش بینی با الگوریتم های شبکه عصبی و SVM در رپیدماینر
-
رایگانجلسه ۹ رپیدماینر: آموزش یک مدلسازی عملی جهت طبقه بندی مجموعه ای از داده ها در رپیدماینر
-
رایگانجلسه ٨ رپیدماینر: آموزش الگوریتم های طبقه بندی (Classification) در رپیدماینر
-
رایگانجلسه۷ رپیدماینر: آموزش یک پروژه عملی جهت خوشه بندی دیتاست حملات در رپیدماینر
-
رایگانجلسه۶ رپیدماینر: آموزش خوشه بندی داده ها در نرم افزار داده کاوی رپیدماینر
-
رایگانجلسه ۵ رپیدماینر: آموزش کنترل های تبدیل داده در رپیدماینر
-
رایگانجلسه ۴ رپیدماینر: آموزش تبدیل انواع داده ها به یکدیگر و اعمال پیش پرداز بر روی داده ها در رپیدماینر
-
رایگانجلسه ۳ رپیدماینر: آموزش ورود انواع دیتاست ها به رپیدماینر
مشاهده همه مطالب